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Abstract— We develop an online convex optimization method
for predicting time series based on streaming observations. We
first approximate the evolution of time-varying autoregressive
integrated moving average (ARIMA) processes and then pro-
pose a discounted online Newton method for estimating time-
varying ARIMA time series. Under practical assumptions, we
establish dynamic regret bounds that quantify the tracking
performance of our algorithm. To verify the effectiveness
and robustness of our method, we conduct experiments on
prediction problems based on both artificial data and real-world
COVID-19 data. To the best of our knowledge, we are the first
to report a COVID-19 prediction that utilizes online learning.

I. INTRODUCTION

Time series prediction studies how to use a model to
predict the future based on previously collected observa-
tions [1]. Typical modeling schemes: Moving average (MA),
Autoregressive (AR), and Integrated (I), have been used in
parameter identification and signal prediction, e.g., stock
price prediction [2], [3] and pandemic forecasting [4], [5].
Despite its broad applicability, most studies assume fixed
underlying models and fit these models with pre-collected
data under strong assumptions on noise and loss functions.
It is natural to ask whether we can allow time-varying models
and more practical assumptions.

In practice, models of time series data often appear to
be time-varying. An example is given by COVID-19 time
series data, where the effective production number R0 [6]
indicates stages of different pandemic periods. The virus
spread changes with public health interventions, e.g., quar-
antine. For this case, it is crucial to develop prediction
methods for time-varying models [6]–[8]. Similar instances
include financial time series data [2], [9] and psychological
phenomena [10]. Another practical concern is the data usage.
In situations with streaming observations, e.g., stock market
or COVID-19 pandemic, fitting a model to the entire (or
batch) dataset collected in advance is no longer feasible.
Instead, a prediction method using online streaming data is
more appealing, and more suitable for large-scale datasets.

Our contribution: In this paper, we propose an online
convex optimization algorithm to predict streaming time
series using time-varying models. Specifically, we propose
a discounted online Newton method for estimating time-
varying autoregressive integrated moving average (ARIMA)
models. Under mild assumptions on noise and loss functions,
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we establish dynamic regret bounds for tracking performance
of our algorithm along the evolution of time-varying ARIMA
processes. Our results encompass static regret bound for
time-independent stationary models as a special case. Finally,
we conduct experiments for prediction of COVID-19 cases to
demonstrate the effectiveness and robustness. To the best of
our knowledge, our work is the first to utilize online learning
for COVID-19 prediction.

Related work: Prediction using time-varying models has
been studied in references [2], [11]–[15]. By assuming Gaus-
sian noise, standard estimation methods such as maximum
likelihood [11], [14], [15] and least-squares [12] are useful
tools for estimating time series models directly. However,
these methods require collecting large datasets for offline
training and are not applicable in the online setting. More
closely related studies for online time series prediction are
summarized in references [16], [17]. In reference [16], the
authors proposed an online Newton step for ARMA time
series prediction and provide a regret bound under weak as-
sumptions on noise and loss functions. In reference [17], the
result of reference [16] was extended to ARIMA time series
prediction. However, in these studies, time-independent time
series models were assumed and only static regret bounds
were provided. Since static regret is designed to compare
with the best-fixed model in hindsight, it is unsuitable
when underlying model is changing over time. We utilize
a dynamic regret method to address this challenge.

Paper outline: In Section II, we formulate the online
ARIMA prediction problem. In Section III, we propose a
discounted online Newton method for ARIMA prediction
and provide performance guarantees. We prove our main
theorem in Section IV and show computational results in
Section V. Finally, we conclude the paper in Section VI.

II. ONLINE ARIMA PREDICTION

We describe the ARIMA model in Section II-A and
formulate the online prediction problem in Section II-B.
A. ARIMA Model

Let Xt be an observation of the time series at time t. The
dth order difference of Xt is ∇dXt for d ≥ 1, e.g., the
1st order difference ∇Xt = Xt − Xt−1 and the 2nd order
difference ∇2Xt = ∇Xt − ∇Xt−1. In particular, ∇0Xt =
Xt and Xt can written as Xt = ∇dXt +

∑d−1
k=0∇kXt−1.

An ARIMA(p, d, q) depicts the evolution of Xt through a
linear combination of past dth order differences and noises,

∇dXt =

p∑
i=1

αit∇dXt−i +

q∑
j=1

βjt εt−j + εt (1)
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where αt := (α1
t , . . . , α

p
t ) and βt := (β1

t , . . . , β
q
t ) are

the unknown model parameters, (p, d, q) is the given model
order, and εt is the zero-mean noise. At time t, the goal
of time series prediction is to forecast Xt based on past
observation. When (αt, βt) are known at time t, we predict
the dth oder difference ∇dXt and Xt as

∇dX̂t =

p∑
i=1

αit∇dXt−i +

q∑
j=1

βjt εt−j (2a)

X̂t(α, β) = ∇dX̂t +

d−1∑
k=0

∇kXt−1. (2b)

However, the model parameters (αt, βt) are often unknown
and time-varying. We focus on this setting in this paper.

B. Online ARIMA Prediction

Let (α̂t, β̂t) be an estimate of (αt, βt). We view the time
series prediction as an online learning game between a player
and an adversary or environment. Before the game starts,
the adversary fixes the model parameters (αt, βt) and noise
εt, and then generates Xt following the ARIMA model (1).
At time t, the player first predicts Xt as X̂t(α̂t, β̂t), next
observes the true Xt, then suffers loss `t(α̂t, β̂t),

`t(α̂t, β̂t) := `t
(
Xt, X̂t(α̂t, β̂t)

)
(3)

where ∇dX̂t =
∑p
i=1 α̂

i
t∇dXt−i+

∑q
j=1 β̂

j
t εt−j . The pre-

diction loss `t(α̂t, β̂t) depends on both the current prediction
(α̂t, β̂t) and the evolution of Xt. To measure the prediction
performance over T rounds, we utilize the dynamic regret
RεT that compares the cumulative loss against the minimum,

RεT =

T∑
t=1

(
`t(α̂t, β̂t) − min

α, β
`t(α, β)

)
where minimization over α and β yields the optimal model
that changes over time t. However, since the noise εt is not
observable, the loss (3) is not computable and classical online
learning algorithms cannot be used to minimize RεT .

Instead, we use the improper learning [16] to approximate
ARIMA(p, d, q) with ARIMA(p + m, d, 0) by adding extra
m model parameters and removing the noise, where m ≥ 0
is a design parameter. Let θt := (θ1t , · · · , θ

p+m
t ) ∈ Rp+m be

the model parameter of ARIMA(p + m, d, 0), and let θ̂t be
the prediction of θt at time t. We predict Xt via

X̂t(θ̂t) =

p+m∑
i=1

θ̂it∇dXt−i +

d−1∑
k=0

∇kXt−1 (4)

where m is to be determined in analysis. The loss function
for prediction X̂t(θ̂t) at time t becomes

`t(θ̂t) := `t
(
Xt, X̂t(θ̂t)

)
(5)

which is computable given past observations and predictions.
We define a more practical dynamic regret RT ,

RT =

T∑
t=1

(
`t(θ̂t) − min

α, β
`t(α, β)

)
(6)

which effectively tracks prediction performance of the time-
varying ARIMA model as we present in Section III.

III. MAIN RESULTS

In Section III-A, we propose a discounted online Newton
method for ARIMA prediction and, in Section III-B, we
establish regret guarantees.

A. Discounted Online Newton Method

Let S be the domain of model parameter θ ∈ Rp+m. We
present our ARIMA prediction method in Algorithm 1. At
time t, the player predicts X̂t(θ̂t) using (4) based on history
and current model parameter θ̂t, and then suffers loss `t(θ̂t)
after Xt is revealed. We next compute gradient ∇`t(θ̂t),
approximate the Hessian ∇2`t(θ̂t) by matrix Pt, and update
θ̂t+1 via a Newton-type step and a Pt-induced projection to
the domain S. The projection under the norm induced by
P � 0 is ΠP

S (x) := argminy∈S ‖y − x‖2P .

Algorithm 1 Discounted Online Newton Step (D-ONS)

1: Input: (p, d, q), G, D, ρ, m, ε, η, γ ∈ (0, 1)
2: Initialization: θ̂1 ∈ Rp+m, and P0 = εI(p+m)×(p+m)

3: for time t = 1, . . . , T do
4: Predict X̂t(θ̂t) as

X̂t(θ̂t) =

p+m∑
i=1

θ̂it∇dXt−i +

d−1∑
k=0

∇kXt−1.

5: Observe Xt and suffer loss `t(θ̂t) = `t
(
Xt, X̂t(θ̂t)

)
.

6: Compute ∇t := ∇`t(θ̂t) and update Pt via

Pt = (1− γ)P0 + γ Pt−1 + ∇t∇>t (7)

7: Update θ̂t+1 via

θ̂t+1 = ΠPt

S

(
θ̂t −

1

η
P−1t ∇t

)
. (8)

8: end for

Let ∇t := ∇`t(θ̂t). We approximate the Hessian of `t(θ̂t)
by (7) using a sum of current estimate ∇t∇>t and a convex
combination of P0 and Pt−1. Equivalently, we express (7)
as a combination of initial P0 � 0 and discounted history,

Pt = P0 +

t∑
s=1

γt−s∇>s ∇s.

This discounting scheme ensures invertability of Pt in (8) at
any time and makes the algorithm numerically more stable
than the discounting method [18]. The inverse P−1t can be
efficiently updated using the Sherman-Morrison formula.

B. Dynamic Regret Bound

Assumption 1 (The ARIMA(p, d, q) model): (i) The zero-
mean noises εt are generated independently, E [|εt|] ≤M <
∞ and `t(Xt, Xt − εt) <∞; (ii) The coefficients {αit}

p
i=1

satisfy |αit| ≤ 1 for any i and any time t; (iii) The coefficients
{βjt }

q
j=1 satisfy

∑q
j=1|β

j
t | ≤ 1− ξ for ξ ∈ (0, 1).
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Assumption 2 (The loss function): (i) The domain is S =
{θ ∈ Rp+m | |θi| ≤ 1, i = 1, · · · , p + m} with diameter
D := supθ,θ′ ∈S ‖θ − θ′‖2 ≤ 2

√
p+m; (ii) The loss `t(·)

is Lipschitz continuous with parameter L > 0 and ρ-exp-
concave with ρ > 0; (iii) The gradient of `t(·) satisfies
‖∇`t(θ)‖ ≤ G for all θ ∈ S; (iv) There exists V ≥ 0 such
that

∑T
t=2 ‖φt−φt−1‖ ≤ V , where φt = argminθ∈S `t(θ).

Assumption 1 is mild since we still allow the noise to
be adversarial and the ARIMA(p, d, q) models to be time-
varying. Assumption 2 (i) follows Assumption 1 (ii,iii). A
ρ-exp concave `t(θ) in Assumption 2 (ii) makes sure that
exp{−ρ`t(θ)} is concave in θ ∈ S, e.g., the quadratic
loss satisfies Assumption 2 (ii, iii). In Assumption 2 (iv),
boundedness is required on prediction variations in hindsight,
which is standard in dynamic regret analysis [19].

Theorem 1 (Dynamic Regret Bound): Let Assumptions 1
and 2 hold. We set η ≤ (1/2) min (1/(4GD), ρ), ε > 0, and
m = q log1−ξ(1/(TML)) in Algorithm 1. Then,

RT ≤ − b1T log γ − b1 log(1− γ) +
b2

1− γ
V + b3 (9)

where b1 = (p + m)/(2η), b2 = 2ηD(ε + G2), and b3 =
b1 log(1 +G2/ε) + ηD2ε/2 +C, C is an absolute constant.

Theorem 1 shows that the dynamic regret for predicting
ARIMA(p, d, q) via ARIMA(p + m, d, 0) is upper bounded
by an instance-dependent quantity. The constant V bounds
the path length of the comparison sequences

∑T
t=2 ‖φt −

φt−1‖ ≤ V where φt = argminθ∈S `t(θ). Setting different
discounting factors γ yields interesting special cases of the
regret bound (9). We elaborate them as follows.

Remark 1: When the path length V is unknown, we can
take γ = 1−T−s for s ∈ (0, 1). Thus, we have −T log γ =
−T log(1 − T−s) ≤ T 1−s/(1 − T−s) = O(T 1−s), where
the inequality − log(1 − x) ≤ x/(1 − x) for 0 ≤ x < 1 is
used. Hence, (9) reduces to

RT ≤ O
(
T 1−s + s log T + T sV

)
which scales as O(T 1−s +T sV ). When V = 0, RT defines
a static regret O(T 1−s). Thus, for s ∈ (0, 1), both static and
dynamic regrets are sublinear if V < O(T ).

Remark 2: When the path length V is known, we can take

γ = 1 − 1

2

√
max(V, (log2 T )/T )

2DT
.

Similarly, (9) simplifies to

RT ≤ max
(
O(log T ), O(

√
TV )

)
which scales as O(

√
T (1 + V )). By setting V = 0, the

logarithmic static regret in [17] is obtained as a special case.
Even if V is unknown, it is straightforward to employ the
meta-optimization method [20] to achieve the same bound.

IV. PROOF OF THEOREM 1

In Algorithm 1, we present an online Newton step in
minimizing loss `t(θ) for ARIMA(p + m, d, 0) prediction.

We can apply the online optimization method [18] to show
the following regret bound; see Appendix A for a proof.

Lemma 2: Let Assumption 2 hold. We set η ≤
(1/2) min (1/(4GD), ρ) and ε > 0 in Algorithm 1. For the
regret R0

T :=
∑T
t=1 `t(θ̂t)−

∑T
t=1 minθ∈S `t(θ), we have

R0
T ≤ − a1T log γ − a1 log(1−γ) +

a2
1− γ

V + a3 (10)

where a1 = (p + m)/(2η), a2 = 2ηD(ε+G2), and a3 =
((p+m)/(2η)) log

(
1 +G2/ε

)
+ ηD2ε/2 are constants.

However, there is a discrepancy between the regret R0
T

and the desired regret RT in (6). To fill in the gap, the rest
is to study the difference between loss functions `t(α, β)for
ARIMA(p, d, q) and `t(θ) for ARIMA(p+m, d, 0). Towards
this objective, we first introduce two auxiliary sequences
using different amount of history information. As defined
by (1), ∇dXt evolves as an ARMA(p, q). We can define a
time series ∇dX∞t with parameters (αt, βt),

∇dX∞t =

p∑
i=1

αit∇dXt−i +

q∑
j=1

βjt
(
∇dXt−j −∇dX∞t−j

)
(11a)

X∞t (αt, βt) = ∇dX∞t +

d−1∑
k=1

∇kXt−1 (11b)

where ∇dX∞1 = ∇dX1. For the prediction X∞t at time t,
the suffered loss is given by

`∞t (αt, βt) = `t(Xt, X
∞
t (αt, βt)). (12)

With appropriate coefficients cit(αt, βt), we can express
X∞t (αt, βt) as a linear combination of all past history,

∇dX∞t (αt, βt) =

t−1∑
i=1

cit(αt, βt)∇dXt−i.

Instead of using whole history, it is efficient to predict using
only the most recent p + m observations. Fix m ∈ N, we
define another time series ∇dXm

t with parameters (αt, βt),

∇dXm
t =

p∑
i=1

αit∇dXt−i +

q∑
j=1

βjt
(
∇dXt−j −∇dXm−j

t−j
)

(13a)

Xm
t (αt, βt) = ∇dXm

t +

d−1∑
k=1

∇kXt−1 (13b)

where ∇dXs
t = ∇dXt for all t and s ≤ 0. For the prediction

Xm
t at time t, the suffered loss is given by

`mt (αt, βt) = `t(Xt, X
m
t (αt, βt)) (14)

Let (α?t , β
?
t ) := argminα,β E[`t(α, β)]. By (5) and (14),

we have Lemma 3.

Lemma 3: Let Assumption 1 hold. Then,
T∑
t=1

min
θ∈S

`t(θ) ≤
T∑
t=1

`mt (α?t , β
?
t ).

Proof: At time t, we can set θ̂it = cit(α
?
t , β

?
t ) for the
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loss (5). By (14), we have

`t(θ̂t) = `mt (α?t , β
?
t ) for any t = 1, · · · , T.

Clearly, minθ∈S `t(θ) ≤ `t(θ̂t). Summing up from t = 1 to
t = T completes the proof.

Next, we connect the loss `mt (·, ·) to `t(·, ·) via `∞t (·, ·) in
Lemmas 4 and 5. Their proofs are provided in Appendix B.

Lemma 4: Let Assumptions 1 and 2 hold. Then,∣∣∣∣∣
T∑
t=1

E [`∞t (α?t , β
?
t )] −

T∑
t=1

E [`t(α
?
t , β

?
t )]

∣∣∣∣∣ = O(1).

Lemma 5: Let Assumptions 1 and 2 hold. Fix m =
q log1−ξ((TML)−1). Then,∣∣∣∣∣

T∑
t=1

E [`∞t (α?t , β
?
t )] −

T∑
t=1

E [`mt (α?t , β
?
t )]

∣∣∣∣∣ = O(1).

We now combine above lemmas to establish a regret bound
for RT . By Lemma 3, we first obtain a lower bound for R0

T ,

T∑
t=1

`t(θ̂t) −
T∑
t=1

`mt (α?t , β
?
t ) ≤ R0

T . (15)

Combining Lemmas 4 and 5 leads to
T∑
t=1

E [`mt (α?t , β
?
t )] =

T∑
t=1

E [`t(α
?
t , β

?
t )] + O(1). (16)

Note that E[`mt (α?t , β
?
t )] = `mt (α?t , β

?
t ). Finally, substitut-

ing (16) and the upper bound (10) into (15) leads to (9).

V. COMPUTATIONAL EXPERIMENTS

We use different datasets to examine the effectiveness and
robustness of Algorithm 1 (or D-ONS).

A. Synthetic Data

We generate observations using a time-varying ARIMA
model with d = 1, and αt = (0.6,−0.5, 0.4, 0.4, 0.3), βt =
(0.3, 0.2) for t ≤ 1000, and αt = (−0.4,−0.5, 0.4, 0.4, 0.1),
βt = (−0.3, 0.2) for t > 1000. The noise terms εt ∼
Unif[−0.1, 0.1]. We run D-ONS with m = 10, T = 2000,
where G, D, and ρ are computed according to Assumption 2.
We use the quadratic loss function, display cumulative losses
of our D-ONS with different discount factor γ in Fig. 1,
and compare them with OGD [17]. The lines show averaged
cumulative losses resulting from 12 experiments for each
algorithm and the same ARIMA process. We observe that
cumulative losses of our D-ONS grow much slower than
OGD. By tuning γ, our algorithm with γ = 0.5 performs
better than ARIMA-ONS [17] (D-ONS with γ ≈ 1).

B. Real-world Data of US COVID-19 Cases

We test our D-ONS for predicting COVID-19 cases in the
US. We use a dataset from COVID-19 Daily Cases, Deaths,
and Hospitalizations [21]. In Fig. 2, we display our prediction
results for total number of cases and total deaths in 300 days
(from 1/23/2020 to 11/15/2020) for NYC. For the quadratic
loss function, we run D-ONS with m = 10, d = 1, T =

C
um

ul
at

iv
e

lo
ss

Iterations

Fig. 1: Performance comparison: OGD [17] (–-), D-ONS
with: γ = 0.98 (– –), γ = 0.5 (····), and γ = 0.1 (– –).
Slow loss growth better performance. We have simulated a
time-varying ARIMA model with a jump change.

Total cases Total deaths

0 50 100 150 200 250 300
0

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250 300
0

5000

10000

15000

20000

25000

Days Days

Fig. 2: Prediction of COVID-19 total cases and total deaths
for NYC from 1/23/2020 to 11/15/2020: real observation (-
--) and D-ONS’s prediction ( ). Our D-ONS’s prediction
displays for every 3 days.

300, γ = 0.5, where G, D, ρ are computed according to
Assumption 2.

As we see in Fig. 2, predictions of our algorithm suc-
cessfully track the spreading trend of coronavirus, signaling
fast outbreak in May for NYC. Before the outbreak (roughly
at 100 in Fig. 2), our predictions have delays to track the
spreading behavior since cases in January to March were not
disclosed. During/after the outbreak, our predictions match
real observations, effectively and consistently for different
states. We also see that our predictions are robust in quickly
responding to any fluctuations. In contrast to studies in
references [22], [23], our approach works in an online way,
needs very few modeling parameters, and does not require
any stationarity assumptions/verifications of the underlying
infection process. Our approach is flexible to predict trends
for different regions without extra designs [24]. Our obser-
vations made for NYC are also visible for other US states.

VI. CONCLUDING REMARKS

In this paper, we have developed a new online predic-
tion method – discounted online Newton step (D-ONS) –
for predicting time-varying ARIMA time series. For the
first time, we provide dynamic regret analysis for non-
stationary time series prediction. Our dynamic regret bound
max(O(log T ), O(

√
TV )) captures both the static regret

O(log T ) and the path length V of time-varying compari-
son sequences. We also empirically verify the effectiveness
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and robustness of our method on both artificial and real-
world datasets. Our paper appears to be the first to report
COVID-19 predictions using online learning. Future direc-
tions include multi-step ahead prediction, optimal tuning of
algorithmic parameters, and other COVID-19 datasets.

APPENDIX

A. Proof of Lemma 2

We begin with the Newton-type step (8). By the non-
expansiveness of projection ΠPt

S (·), for any φt ∈ S, we have

‖θ̂t+1 − φt‖2Pt
≤ ‖θ̂t − 1

ηP
−1
t ∇t − φt‖2Pt

= ‖θ̂t − φt‖2Pt
− 2

η∇
>
t

(
θ̂t − φt

)
+ 1

η2∇
>
t P
−1
t ∇t

which implies that

∇>t (θ̂t − φt)

≤ 1
2η∇

>
t P
−1
t ∇t + η

2

(
‖θ̂t − φt‖2Pt

− ‖θ̂t+1 − φt‖2Pt

)
.

(17)
On the other hand, by induction, we show that ‖Pt‖ ≤ ε +
G2

1−γ := c1. Clearly, it is true for P0. Assume that it is true
for Pt−1. By (7) and P0 = εI , we have

‖Pt‖ ≤ (1− γ)ε + γ
(
ε+ G2

1−γ
)

+ G2 = ε + G2

1−γ .

Thus, a lower bound ‖θ̂t+1 − φt‖2Pt
is given by

‖θ̂t+1 − φt‖2Pt
= ‖θ̂t+1 − φt+1‖2Pt

+ ‖φt+1 − φt‖2Pt

+ 2(θ̂t+1 − φt+1)>Pt(φt+1 − φt)

≥ ‖θ̂t+1 − φt+1‖2Pt
− 4Dc1‖φt+1 − φt‖.

Substituting the above inequality into (17) yields

∇>t (θ̂t − φt) ≤ 1
2η∇

>
t P
−1
t ∇t + 2ηDc1‖φt+1 − φt‖

+ η
2

(
‖θ̂t − φt‖2Pt

− ‖θ̂t+1 − φt+1‖2Pt

)
.

Summing both sides of the above inequality from t = 1 to
t = T leads to∑T

t=1∇>t (θ̂t − φt)

≤ 1
2η

∑T
t=1∇>t P

−1
t ∇t + 2ηDc1V + η

2 ε‖θ̂1 − φ1‖
2

+ η
2

∑T
t=1

(
θ̂t − φt

)>
(Pt − Pt−1)

(
θ̂t − φt

)
(18)

where we set set φT+1 = φT and apply
∑T
t=2 ‖φt−φt−1‖ ≤

V ; we omit −‖θ̂T+1 − φT+1‖2PT
. By (7) and γ ∈ (0, 1),

η (Pt − Pt−1) ≤ η∇t∇>t . Hence, (18) becomes∑T
t=1

(
`t(θ̂t)− `t(φt)

)
≤ 1

2η

∑T
t=1∇>t P

−1
t ∇t + 2ηDc1V + η

2D
2ε.

(19)

where we use the exp-concave property [19, Lemma 4.2].
The rest is to bound the right-hand side of (19). We note

that ∇>t P−1t ∇t = 〈P−1t ,∇t∇>t 〉, ∇t∇>t � Pt−γPt−1, and

∇>t P−1t ∇t ≤ 〈P−1t , Pt − γPt−1〉 ≤ log |Pt|
|γPt−1|

= log |Pt|
|Pt−1| − (p+m) log γ.

where p + m is the matrix dimension, and the second
inequality is due to: 〈A−1, A−B〉 ≤ log |A||B| for any matrices
A � B � 0 (see [19, Lemma 4.5]). Hence,∑T

t=1∇>t P
−1
t ∇t

≤ log |PT | − (p+m) log ε− (p+m)T log γ

≤ (p+m) log
(

1 + G2

ε(1−γ)

)
− (p+m)T log γ

where we use ‖Pt‖ ≤ c1 in the second inequality. Applying
the above inequality to the right hand side of (19) yields∑T

t=1

(
`t(θ̂t)− `t(φt)

)
≤ − (p+m)T

2η log γ + p+m
2η log

(
1 + G2

ε(1−γ)
)

+ 2ηD
(
ε+ G2

1−γ
)
V + η

2D
2ε.

We note 1 ≤ 1
1−γ , take appropriate constants a1, a2, and a3,

and set φt = argminθ∈S `t(θ) to get the desired bound.

B. Proofs of Lemma 4 and Lemma 5

Proof: [Proof of Lemma 4] By Assumption 1, εt is inde-
pendent of ε1, · · · , εt−1. Thus, the best prediction available
at time t has loss at least `t(Xt, Xt−εt) in expectation. The
ideal ARIMA model in hindsight, i.e., the one that generated
signals, has the same loss `t(Xt, Xt − εt). By the Lipschitz
continuity of `t(·),∣∣`∞t (α?t , β

?
t )− `t(α?t , β?t )

∣∣
=
∣∣`t(Xt, X

∞
t (α?t , β

?
t ))− `t(Xt, Xt − εt)

∣∣
≤ L

∣∣X∞t (α?t , β
?
t )−Xt + εt

∣∣
= L

∣∣∇dX∞t −∇dXt + εt
∣∣

where the second equality follows (11b).
We next show by induction that E[|∇dX∞t −∇dXt − εt|]

decays exponentially in t. Let U be a positive constant
such that E[|∇dX∞t −∇dXt − εt|] ≤ U for 1 ≤ t ≤ q.
Assume that E[|∇dX∞τ −∇dXτ − ετ |] ≤ U(1 − ξ)τ/q for
q < τ < t, as the inductive basis. Next we show that
E[|∇dX∞t −∇dXt − εt|] ≤ U(1 − ξ)t/q . Using ∇dX∞t
in (11a) and ∇dXt, we have

E[|∇dXt −∇dX∞t − εt|]

= E
[∣∣∑q

j=1 β
j,?
t

(
∇dX∞t−j −∇dXt−j − εt−j

)∣∣]
≤
∑q
j=1|β

j,?
t |E

[∣∣∇dX∞t−j −∇dXt−j − εt−j
∣∣]

≤
∑q
j=1|β

j,?
t |U(1− ξ)(t−j)/q

≤
∑q
j=1|β

j,?
t |U(1− ξ)(t−q)/q

≤ U(1− ξ)t/q
(20)

where the second inequality follows the induction basis and
the last inequality is due to Assumption 1 (iii).

Therefore,∣∣E[∑T
t=1 `

∞
t (α?t , β

?
t ) −

∑T
t=1 `t(α

?
t , β

?
t )
]∣∣

≤
∣∣∑T

t=1 LE[|∇dX∞t −∇dXt + εt|]
∣∣ ≤ O(1)
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which concludes our proof.
Proof: [Proof of Lemma 5] By the Lipschitz continuity,∣∣`∞t (α?t , β

?
t )− `mt (α?t , β

?
t )
∣∣

=
∣∣`t(Xt, X

∞
t (α?t , β

?
t ))− `t(Xt, X

m
t (α?t , β

?
t ))
∣∣

≤ L
∣∣X∞t (α?t , β

?
t )−Xm

t (α?t , β
?
t )
∣∣

= L|∇dX∞t −∇dXm
t |

where the inequality follows (11b) and (13b). For m ∈
{0,−1, · · · ,−(1− q)}, by (13a), ∇dXm

t = ∇dXt and∣∣∇dXm
t −∇dX∞t

∣∣ ≤ ∣∣∇dXt −∇dX∞t − εt
∣∣+ |εt|

≤ 2M
(21)

where we employ |εt| ≤ M from Assumption 1 (i) and the
exponential decaying of |∇dXt −∇dX∞t − εt| from (20).

We next show by induction that |∇dXm
t −∇dX∞t | ≤

2M(1−ξ)m/q . For the inductive basis, it is trivial for m = 0
from (21); for m = 1, . . . , q−1, it can be verified as follows,

|∇dXm
t −∇dX∞t |

=
∣∣∑m

j=1 β
j,?
t

(
∇dX∞t−j −∇dX

m−j
t−j

)∣∣
+
∣∣∑q

j=m+1 β
j,?
t

(
∇dX∞t−j −∇dX

m−j
t−j

)∣∣
≤
∑m
j=1|β

j,?
t |
∣∣∇dX∞t−j −∇dXm−j

t−j
∣∣

+
∑q
j=m+1|β

j,?
t |
∣∣∇dX∞t−j −∇dXt−j

∣∣
≤ 2M

(∑m
j=1|β

j,?
t |(1− ξ)(m−j)/q +

∑q
j=m+1|β

j,?
t |
)

≤ 2M
∑m
j=1|β

j,?
t |(1− ξ)(m−q)/q

≤ 2M(1− ξ)m/q

where the first inequality follows the triangle inequality and
the definition of ∇dXm

t for m ≤ 0, and the last inequality
is due to 1 ≤ (1− ξ)(m−q)/q for 1 ≤ m ≤ q − 1.

We now show the inductive step by assuming that
|∇dXm′

τ −∇dX∞τ | ≤ 2M(1− ξ)m′/q for q ≤ m′ ≤ m and
τ < t and proving that |∇dXm

t −∇dX∞t | ≤ 2M(1−ξ)m/q .

|∇dXm
t −∇dX∞t |

=
∣∣∑q

j=1 β
j,?
t

(
∇dXt−j −∇dXm−j

t−j
)

−
∑q
j=1 β

j,?
t

(
∇dXt−j −∇dX∞t−j

) ∣∣
=
∣∣∑q

j=1 β
j,?
t

(
∇dX∞t−j −∇dX

m−j
t−j

)∣∣
≤ 2M

∑q
j=1|β

j,?
t |(1− ξ)(m−j)/q

≤ 2M
∑q
j=1|β

j,?
t |(1− ξ)(m−q)/q

≤ 2M(1− ξ)m/q

where the last inequality follows Assumption 1 (iii).
Therefore,∣∣E[∑T

t=1 `
∞
t (α̂t, β̂t) −

∑T
t=1 `

m
t (α̂t, β̂t)

]∣∣
≤
∣∣∑T

t=1 LE[|∇dX∞t −∇dXm
t |]
∣∣

≤ 2MTL(1− ξ)m/q

which finishes proof by taking m = q log1−ξ((TML)−1).
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